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A two-dimensional finite element method capable of tracking sharp interfaces is
developed. The method is based on a fixed mesh of bilinear isoparametric elements
and is extremely simple and easy to use. The interfaces are tracked with a set of marker
points that define their position at all times. Several different approaches to finding
the interface position and velocity are discussed, and their effect on the convergence
rate is examined. It is shown through numerical examples that the approximation
to the interface position converges with second-order accuracy in two-dimensional
problems, as opposed to previously developed finite difference algorithms that are
only first-order accurate. The approximation to the interface velocity is shown to be
of first order. A number of examples are examined, including several that provide a
careful comparison with previously published resultse 2001 Academic Press

Key Wordsinterface tracking; dendritic solidification; finite element method.

1. INTRODUCTION

The simulation of crystal growth into an undercooled liquid has attracted much inter
for a number of years because of the technological importance of understanding and
trolling solidification processes in the production of advanced materials in the aerospace
semiconductors industries [1-10]. The numerical modeling of problems with phase cha
started over 50 years ago, when the first attempts at modeling stable melting/solidificatic
also known as the Stefan problem—were made [11, 12]. An excellent historical reviev
given in Juric and Tryggvason [8]; further extensive discussions and literature reviews
this topic can be found in Crivelli and Idelson [13], Floryan and Ramussen [14], Volls
et al.[15], Udaykumaret al.[10], Udaykumar and Shyy [16], and Provatsl.[9].

The presence of an interface between two phases, which in this work is assumed t
solid and liquid, complicates the solution of an otherwise manageable problem. The inter
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766 ZHAO AND HEINRICH

position must be calculated as part of the solution process, and interface conditions n
be satisfied at this interface. This results in a highly nonlinear problem that is very ser
tive to numerical error and prone to numerical instability. The early numerical models
melting/solidification were developed for the stable Stefan problem and avoided the ac
calculation of the interface position, while still being able to calculate the thermal fie
[17-20]. However, when dealing with unstable solidification, as is the case with a crys
growing into an undercooled liquid, it is necessary to accurately calculate the interfz
position. This led to the development of diffuse-interface models, of which the phase-fi
method is the most widely used [6, 7, 9, 21-24]. In the phase-field method, a continu
transition between the two phases is introduced across a thin layer of finite thickness
an additional variable identifying the phase, called the phase field, is calculated. The
advantage of this method is that it is difficult to relate the parameters in the equation
the field variable to physical parameters such as the surface tension. Furthermore, re
depend on the prescribed interface thickness, which is required to be extremely small
accurate calculations [6, 7]. An excellent review of the phase-field methods can be fo
in [25].

Boundary integral methods, in which the problem is cast in the form of an integral rep
sentation of the interface, were developed next [4, 5, 26]. Even though these methods |
been used to successfully simulate very complex solid-liquid interfaces, they are extren
complex mathematically and are computationally expensive. Most of these methods
also limited to problems with homogeneous material properties.

More recently, methods tracking the sharp interface have been developed that are
general in that they can handle the discontinuous properties at the interface and they prc
the explicitlocation of the interface at all times. Sullivatral.[2] and Palle and Dantzig [27]
developed finite element schemes based on adaptive meshes in such a way that the inte
is always described by nodal mesh points that move with the interface. On the other he
Juric and Tryggvason [8], Udaykumatral.[10], and Udaykumar and Shyy [16] developed
finite difference models based on a fixed mesh, where the interface is tracked using a s
markers that define its position and shape. The method in [8] is not quite a sharp interf
method since it uses a distribution function to represent the temperature and the heat sc
term at the interface but uses markers to follow the position of the interface itself. T
method in [10] is strictly a sharp interface method. These methods successfully mode
unstable solidification of pure substances under a variety of different conditions, suct
discontinuous conductivities, anisotropic surface tension, and kinetic mobility, and differe
symmetry modes. The moving mesh method in [2] was shown to be second-order acct
[28]; however, the approximation to the interface location in [8] and [10] is only first-orde
accurate.

Inthis work, a finite element method for front tracking is developed that is based on a fix
mesh that follows the interface in a way similar to the methods of Juric and Tryggvason
and Udaykumaet al.[10]. The method is extremely simple and restricts all calculations—
except for the evaluation of the gradients in the direction normal to the interface—to 1
element level. Moreover, it will be shown that this method exhibits second-order conv
gence rates for the interface location.

The governing equations are introduced in the next section, and the numerical al
rithm is presented in Section 3. The approximation errors are discussed in Sectior
and examples and further discussion are given in Section 5. Conclusions follow
Section 6.
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2. PROBLEM FORMULATION

The solidification of a pure substance is addressed by assuming that conduction is
only mechanism of heat transport. The energy equation is given by

aTs

e = AV?Ts in the solid phase (1a)
and

oT

a—tL = V2T, in the liquid phase. (1b)

The conditions at the solid—liquid interface are

Ts=TL =T (2a)

AZ—? — 88% =1-yT)V. (2b)
In this work, the subscript§ and L denote the solid and liquid phases, respectively
The equations are made nondimensional using a reference lehgthe reference time
T = H?/a|, and the nondimensional temperatdire= cp (T* — T*)/L, where(*) indi-
cates a dimensional quantity. The parameters in (1) and (2) aresCps/pLCpL, A =
ks/kL, St=cp(TE — T3)/L, andy = (cps— CpL)/CpL. In the abovep denotes density,
cp is specific heaty is thermal conductivityT, is the melting temperature for a planar
interface T is the far-field temperaturé,is the latent healyy = (d§| /dt) - Aisthe nondi-
mensional local interface velocitﬁ is the interface, and, is the local nondimensional
interface temperaturd; is given by the Gibbs—Thompson equation [8, 29]

T — yT|2 +ok+uV =0, 3)
wherex is the local interface curvature is the surface tension, apds the kinetic mobility

(all nondimensional). The last two quantities may vary locally to account for anisotroy
effects. In (2b), the normal derivative is defined as

oT
— =N-VT, 4)
an

wherefi denotes the unit vector normal to the interface and pointing toward the liquid pha
The boundary conditions associated with (1) will be of either the Dirichlet type, i.e.,

T(X, 1) =b(X,t) forX eI'p, (5a)
or the Neumann type,
oT - o
—sa—n(x, t)y =q(X,t) forX e 'y, (5b)

where the subscript® and N denote, respectively, the portions of the boundary where
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Dirichlet or Neumann boundary conditionis prescribed; A inthe solid region, and = 1
in the liquid region. Mixed or Robins boundary conditions are also readily incorporated
the model, but they are not discussed here for the sake of brevity. The nondimensional f
above offers the advantage that, in a given region where the far-field temperature is unifc
the Stefan number becomes the Dirichlet boundary condition.

Finally, a set of initial conditions is needed for the temperature and interface position

T(X, 0 =ToX), S (X 0 = SX). (6a,b)

This completes the formulation of the problem.

3. FINITE ELEMENT METHOD

The two-dimensional model will be described. In three dimensions, the procedures
the same, with the obvious added complexities derived from the topology.

The discretization is based on a Galerkin formulation using the four-node isoparame
bilinear element. Without loss of generality, the discussion is restricted to the case ¢
rectangular domairf2, subdivided by a uniform rectangular mesh. It is also assumed th
an element can be intersected by an interface in only two basic ways (Fig. 1). The eleme
subdivided into atriangle and a pentagon in the first case (Fig. 1a) and into two quadrilate
in the second case (Fig. 1b). It will become clear later in Section 3.4 that the resolut
that can be achieved with this method as two interfaces advance toward each other is ¢
same magnitude as the mesh size. Therefore, if an element is intersected by more thal
interface segment, it is beyond the mesh resolution capabilities. If resolution at a sma
scale is required, the mesh must be refined.

The weak form of (1) and (2) is as follows: Given the initial conditions (6) and a set ¢
markers that define the interface posit®rin C°(R2), find a temperature field among all
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FIG. 1. Transformation of a portion of an intersected element into a standard form. (a) Triangle-pentac
intersect. (b) Biquardrilaterial intersect.
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test functions in the spade} (Q2) such that the expression

/(wSaT—I—EVw-VT>dQ=/ w[l—yT|]VdS—|—/ wq dI'y @)
Q ot S I'n
is satisfied for all weighting functions in the spaceH3(2), and (2b) is satisfied at all
marker points defining .

In (7),8 = n in the solid region§ = 1 in the liquid,S denotes the interface, a@f(Q)
is the set of all continuous functions definedsin The setH3 () and the spacéld ()
are, respectively, the subset of the sp&t&2) consisting of functions that satisfy the
Dirichlet boundary conditions (5a) and the subspack bfQ2) consisting of functions that
satisfy homogeneous boundary conditionden H(Q) is the standard Sobolev space of
functions that are square integrable, together with their first partial derivative§over

3.1. Galerkin Formulation

The semi-discrete Galerkin form of (7) is obtained by replacing the spid¢®) with
the finite-dimensional space of piecewise bilinear functi®<<2), defined over the finite
element mesh o nodes. Over each element,

4
TGy 0 =Y N, YT, ®)
j=1

and, settingu; = N;, the semi-discrete Galerkin form is as follows: Fifidn SN () such
that

XN:{[/QSNideQ}TJ’—F{/QSVNiVNJ dszh}:/s N [1—yT|]dS+/FN Niq dl'y

j=1
9)

is satisfied for = 1,2, ..., N, where globallyT = Eszle (X, Y)T; (). The discretization
above yields a system of ordinary differential equations in time of the form

MT+KT=F, (10)

where the mass matriM and the stiffness matriK are given by
m;; :/SNiNj dQ and kij = / eVNi VN;j daq. (11)
Q Q

The right-hand side vectdr contains the contributions of the line integrals and the Dirichle
boundary conditions.

The system of equations (10) is solved usingafraethod [30, p. 260]. The final system
of linear algebraic equations takes the form

(M +60AtK)T™ = (M + (0 — DALK)T" + [(1 — 6)F" + 6 F"Y]At, (12)

where the superscript denotes the time level arflis a user-defined parameter. In this
work, the valueg® = 0.5, which corresponds to the second-order-in-time Crank—Nicolsor
Galerkin method, has been used exclusively. Notice that the maMcasdK are rebuilt
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at every iteration because of the motion of the interface. The system of linear algeb!
equations (12) has been solved using a conjugate gradient iterative method.

3.2. Element Matrices

For elements that are completely contained within either the solid or liquid phase, |
matrices above are readily calculated from (11), and the line integraBpigrero. Details
of how the matrices are constructed for elements that are intersected by an interface
presented below.

3.2.1. Mass and Stiffness Matrices

In order to calculate the mass matrix of elements intersected by an interface, two isop
metric transformations are defined that map one portion of the element into a standard f
(Fig. 1). These transformations are simple and easy to evaluate; for example, for the «
in Fig. 1a, they are

{x} 1 {(1+n)Ax] ﬂ [(1+a)Lz— 1]

== and = .

yl  2[1-8§Ay n (1+bls—1

For the situation in Fig. 1b, they are
b-alaton] = |-
yl 2[A-§Ay 1

Notice that the first transformation is a simple rotation and the second one always has
same form. The integrals ov&y; become

o
2A+ B+ bz +a(by —bp)] — 31 - ﬁ)]'

101
/F(x,y)dxdy:// F(Lq, Lz)%(1+a)(1+b)AxAydL1dL2 (13)
Q1 JO JO

wheng; is a triangle, and

1,1
/ F(x,y)dx dy:// F(a, ﬂ)i(g“ + 2)AxAydL;dL, (14)
o 0.Jo 16

wheng; is a quadrilateral, where = b; + b, + a(b; — by). The integrals of the form in
(13) are evaluated numerically using six integration points in the triangle; the ones of
formin (14) are calculated with a:8 3 Gauss quadrature. The elements of the mass matr
are given by

m;; :/ N; N; dQ+ (-1 Nideﬂl. (15)
Q Q1
For the stiffness matrix, the expressions for the integral @4dsecome somewhat more
involved because of the presence of the derivatives, but they can still be obtained in clc
form. For the triangular cut, the derivatives are given by
N 2 N N 2 N

—=—"_ 1 agnd —=-—— "~ 1, (16)
X (14+b)Ax dlLs ay (1+a)Ayal,
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and, for the quadrilateral cut, by

oN; _< 8 >8Ni nd oN; _ 2 <3Ni (bl—bz)(l—i-ﬂ)aNi)
x  \(+2ax) 98 T Ay ¢ +2 B )

ay Ay \ oo € +2 ap

(17)

The stiffness matrix is obtained from

aNi ON;  aN; ON; aNi N, ON; ON;
kij = ————+ ——dQ+ (A -1 — 4+ ——]dQ,.
o \ax ax ' ay oy o, \dx ax | ay ay

(18)

The same integration quadratures as for the mass matrix are used to evaluate the stif
matrices.

Finally, we should mention that approximating the interface segment by a straight |
within the element is consistent with the bilinear formulation and preserves the ovel
second-order accuracy in the approximation. An additi@@?) error is introduced in the
case of the triangular cut in Fig. la.

3.2.2. Latent Heat Source Term

A weakness of previously proposed models has been their need to distribute the Iz
heat produced at the interface over nodes away from the interface location, essent
smearing the interface. Full advantage of finite element methodology is taken, using
shape functions to integrate the source term exactly along the interface segment interse
an element, and assigning the contributions to the element nodes. Consider the ele
shown in Fig. 2, which is intersected as shown. It is assumed that the interface segr
within the element is always a straight line. The contribution of the latent heat genera
on the interface segment to each node in the element is

Qi=/ Ni(L— TV dS. (19)
S

@ 3)

NI

(x2 ’ y2)

St

e
M (x1, 1) 2)

marker

FIG.2. Latentheatcalculation and distribution to element nodgsy;) and(x., Y,) are the two intersections
between the interface and the element boundagedenotes the interface segment, dfds the average velocity
of the segment.
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To evaluate the integral in (19§ is expressed parametrically as

[X(S)} _ [(Xz — X))+ Xl] (20)
y(s) (Y2 —Y)sS+ W
and (19) is rewritten as
1 -
Qi = /O Ni (x(s), y(s)(1— yTV L ds, (21)

whereT andV are, respectively, the average temperature and velocity of the interfa
segment and

L1 = V(X2 — x1)2 + (Y2 — y1)2

is its length. Because the shape functions are a quadratic polynomighéy are integrated
exactly using Simpson’s rule or a two-point Gauss quadrature. The discretization of
source term in one dimension using a linear approximation involves an error of fou
order, hence, the largest error is introduced by the polygonal approximation of the interf
and isO(h?) [31, pp. 50 and 196].

3.3. Interface Tracking

The interface is described using a set of marker points located on the interface, as c
in [8, 10]. If the shortest side of a uniform rectangular grid is denotetl,lipe distance
d between any two adjacent markers is controlled so tt@tt @ d < h. If the distance
between any two adjacent markers becomes larger tthamother marker is added in
between. Ifd becomes shorter than3h, then a marker is removed, provided that the
distance between the newly adjacent markers does not exgastlerwise, a marker is
relocated halfway between its neighbors.

To calculate the curvature and the unit normal to the interface, alocal quadratic interpo
centered at each interior marker is constructed. For markers lying on the boundary of
domain, the condition that the interface intersect the boundary at°aar@fle is imposed,
and symmetry is used to construct a quadratic interpolant centered at this point. M
sophisticated interpolants, such as cubic and cubic splines, have also been utilized wit
measurable improvement in the solutions. This agrees with the conclusions of Chorin |
and Udaykumaet al.[10], who also reported that nothing is gained by utilizing higher-orde
approximations to the interface.

Using the arc length coordinate as shown in Fig. 3,

[X(S)} (S—%)(S— %) |:X1] (S—s1)(S—S3) {X2:| (S—s)(S— %) [X3]

Yo G -)E-%) il | @-s)&—%) [y | (s s)(s— %) |ys
(22)

wheres, = /(% —%-1)2+ (¥ — ¥i-1)? and $3 =S+ /(%1 — %) + (Vip1 — Yi)2.
The expressions for the curvature and the unit normal at the midoint,, are

_ Ys(S2)Xss — Xs(S2) Yss
K= =

Ys(S2)i — Xs(S2) ]
S 9

(23)

A= (24)



FRONT-TRACKING FEM 773

FIG. 3. Local arc length coordinates to calculate curvature and direction of the normal to the interface.

with

S= v/ (%s(5))? + (Ys(22))2.

The derivatives are readily calculated from (22). Using the factghat 0,

|:Xs(52):| _ 32_58|:X1:| N 25 -5 |:X2:| N S [X3] (25a)

Ys(S2) 9% Vil SAS—-%) Y] SSE—9)|Ys
-l el wtl) e
Yss|  SS3lY1] A —S) Y2l S(Ss—S) Y3

3.4. Interface Position and Velocity

The method used to determine the position and velocity of the interface is the m
critical aspect of this kind of method because it determines the order of convergence of
numerical approximation to the interface position (convergence will be discussed in deta
the next section). These quantities are obtained simultaneously from the interface cond
(2b). Two basic approaches have been used, both of which involve an iteration that use
velocity at the last time step to estimate the next position of the interface; that is, the ini
guesses arex'th)y = xI' + AtV" and (V1) = V™. Subsequent approximations follow
one of the two methods described below.

Direct approximation. In this method the jump in the heat flux at the interface is eval
uated directly from the currently assumed interface position and the resulting tempera
field. A new interface velocity is then calculated directly from (2b), and a new estimate
the interface position is derived by multiplying the average of the velocity at the last tir
step and the new velocity by the time step. This is the simplest way available to update
surface position.

Incremental method. In this method, (2b) is used to update the interface position rath
than the velocity. Figure 4 shows a schematic and the notation in one dimension for s
plicity. At the current iteration, the latest estimate of the interface positiox/'ish),. The
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(x1"+1)k+1 = (x;1+1)k +e,

(vn+1) . (x1n+1)k+1 _xln
1 k+1

Al

FIG. 4. Schematic of the incremental velocity updating method.

temperature field is calculated using this as the position of the interface. Introducing
correctione, the derivatives in (2b) are evaluated us(m@*l)k + & as the interface posi-
tion and the velocityV"+1),. Satisfaction of (2b), which is done using Newton’s method
requires the solution of the nonlinear equat®¢e) = 0, where P is a polynomial ig,.
Notice that the velocity can be made to be implicit by usiod'THx + e/ At instead of
(V") in (2b). However, this can lead to a loss of stability and has not proved to be ve
effective.

Several methods have been implemented in conjunction with a variety of approxin
tions to the normal derivatives in (2b). Here, the discussion is restricted to two of the
methods—Iinear approximation and quadratic finite element approximation—together w
the incremental approach to update the interface position. Other methods implemel
so far are not as effective or thus behave very similarly to the methods described be
and are better discussed in detail elsewhere. Using the notation shown in Fig. 5a in
dimension to simplify the expressions and assuming that the solid is to the left of t
interface,

LTS:T'_TZ (26a)
an ~ a+e
E:E_T' (26b)
an = a—e

for the linear approximation and

T 2x—3a—e 2a+e— 2x 2X —a
a—ns(x) ~ <7>T1+ <7)T2+ (—)T. (27a)

aka+e a(@a-+e (a+e(2a+e
oTL _{ 2x—3a+2e 2Xx+e—2a 2x—a+e
8H(X)Z((e—a)(e—ze':\)) ! ( ae—a) ) ’ <a(2a—6)>T4 (270)

for the quadratic finite element approximation. Equation (27a) is written with respect tc
local coordinate system with its originxat= p; in Fig. 5a, and (27b) is written with respect
to a local system located at= p, in the same figure. In order to find the temperature:
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Xia2 Xi+3

T I

/ Temperature distribution

Ti+1

Linear intei‘polation

\/

X1 Xil
(b)

FIG.5. Schematic and notation for the calculation of the temperature gradients at the interface. (a) Loca
of the temperature interpolation points. (b) Error introduced by linear interpolation over an element containing
interface.

Ti, i =1, 2,3, 4,the coordinate&, y;) of the points in the normal direction to the interface
are located and the elements containing these points are identified. The temperatures
points are obtained from the bilinear interpolant to the temperature field over the elem
containing them.

As long ase « a, (26) yields anO(a?) approximation to the derivatives at the mid-
points ¥2(p2 + pi) and %2(p, + ps). The quadratic finite element approximations, (27),
are O(a®) when evaluated at the poinfs. = (2a+ e)(3— +/3)/6 and pr = (2a — €)
(3+ +/3)/6 to the left and right op, , respectively, where the points are given in their corre
sponding local coordinate systems. The pomt&nd pg correspond to those in a set of two
Gauss points over each element that are closgstdo each side of the interface [30, p. 196].

In Fig. 5b, we show (one dimensionally for simplicity) a temperature profile typical
the problems considered in this work for an element that contains the interface, toge
with the linear interpolant to the temperature over the element. It can be observed that
linear interpolant over the element is inaccurate because of the kink in the temperature
at the interface. Therefore, in order to preserve the accuracy in the calculation, we a
interpolating the temperature over this element by choosing the diséandegs. (26) and
(27) large enough to ensure that the sampling poip@nd Ts in Fig. 5a do not lie in the
element that contains the interface. In practice; h has been used with no detrimental
effects, even though, strictly speaking, it shouldsbe h+/2 in a square mesh. However,
smaller values, such as= h/2, produce a loss of accuracy in the calculation. This i
important because it shows that the resolution of the method is restricted to the mesh
as mentioned at the beginning of Section 3, and justifies the assumption that element:
be intersected by one interface segment only.
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For the direct method, the expressions for the normal derivatives are obtained from (
and (27) by setting = 0. Regardless of the method used, a relaxation parameter must
introduced in the calculation of the interface velocity, that is,

(V" D1 = (VM 4 BVE — (VMHYY), (28)

whereV* is the velocity that has just been calculated using one of the methods descril
above, ang is the relaxation parameter. The valugsas problem dependent and is chosen
to help keep the number of iterations in a time step less than 8. In the direct mgthoc
is kept constant and values between 0.2 and 0.9 have been used, which are larger
the value 0.1 used by Udaykumer al. [10]. In calculations performed so far using the
incremental methodg} has been chosen between 0.005 and 0.03. This gives a relaxat
factor comparable to that used by Juric and Tryggvason [8]. The convergence criterion
in the calculations presented in this work is that the change in the interface velocity betw
iterations must be less than 0.001% at all marker points before the iteration stops and
moves to the next time step.
The calculation proceeds as follows:

1. Attimet = t,, the temperature fiel@" is known at every node in the fixed mesh, and
the interface positior8” and the velocityv" in the direction normal to the interface are
known at every marker. Set= 0.

2. For each marker, calculate an initial guess for the position of the interface at til
t" = t" + At from (x"1)p = x] + V"AL.

3. Find a new temperature fie{@ "*); using the new interface position.

4. At each marker, calculate from (2b) and (26) or (27).

5. Obtain a new interface position and velocity at each marker &), , 1 =(x"+1); +
e, V* = (V") +q/At, and (28).

6. Calculate the maximum relative change in the velogityat the markers:

[V i = (VMY
IOVl

3V = max (29)

7. 1f 8V < 1075, setx]"™ = (x"1); 1, VM1 = (V™) and start the next time step.
Otherwise, sett =i + 1 and go back to step 3.

4. ACCURACY AND CONVERGENCE

It is well known that finite element approximations to the heat equation using biline
elements converge at a second-order rate in space, provided that the solution poss
square-integrable first partial derivatives [30, p. 112]. These conditions are generally sc
fied in the problems of interest here. However, the approximation to the interface posit
is not automatically second-order accurate; in fact, the algorithms of Juric and Tryggva:
[8] and Udaykumaeet al. [10] yield only a first-order convergence rate for the interface
position. Although a formal error analysis of the accuracy and the convergence rate of
approximation to the interface position obtained with the present algorithm was not poss
here, a problem with a known analytical solution is used to show the convergence rat
the present method.
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The convergence properties of the present finite element method are discussed in t
of the problem of axially symmetric solidification in tlg-plane resulting from a line sink
perpendicular to the plane located at the origin, assuming that, initially, the plane is ¢
uniform temperaturd@, for which a similarity solution exists [29, p. 118; 33, p. 294]. The
solution is given by

TE(r,t) = Q Ei(x Ei r* T (30a)
0.0 = o [E00 -8 (g )| + T

* * Too_Tr;k‘l ; r2

T, )y =T — EiA) Ei < Lt)’ (30b)

whereas = ks/psCpsanda = k. /pLCpL are the solid and liquid thermal diffusivitie®
is the sink strength, anBi(x) is the exponential integrdti(x) = fxoo(e—s/s) ds, x > 0.
The interface locatiomR(t) is given by

R(t) = 2A/ast, (31)
wherea is the unique root of the equation

e(lfA)AZ Q
Ei(AA2) - drpasl’

22’ 4 StA (32)
and the density is assumed to be constant.

Figure 6 illustrates the two-dimensional problem, which is solved for one quarter of t
plane over a region of dimensions 1 ctrl cm, as shown. The physical properties usec
in the calculations aré = 20000 J/Kg,os = p. = p = 10* Kg/m3, cps = 100 J/Kg- K,
cpL = 160 J/Kg- K, ks =20Jd/s m-K, k. = 10J/s m-K,andQ = 1000 J/s m- K. For
this combination of parameters, the valuerdh (31) is 0.10514688 an8t = 0.08 based
on T — T3 = 10 K. These properties were chosen because they are similar to those
Pb-Sb alloys. The Stefan number was picked small to increase the difficulty of the numer
problem. To avoid the difficulties associated with the singularity at the source and to mal
comparison of results for different meshes meaningful, a square of. dim@®x 0.4 mm—
corresponding to the largest mesh size used in the calculations—that contains the o
is removed from the domain and the calculations are started using as initial conditions
analytical solution at = 10 swhen the interface ismat= 2.974- 10-3m, as shown in Fig. 6.
Along the boundaries defined py = 0.4mm 0 <y <04mm}, {y=04mm 0<x <
0.4 mm}, x = 10 mm, andy = 10 mm, the analytical solution is imposed at all times a:
a Dirichlet boundary condition on the temperature field. Along the rest of the segmet
x = 0 andy = 0, the symmetry condition of zero heat flux in, respectively,thandx-
directions is imposed. Meshes of 2525, 50 x 50, 100 x 100, and 200« 200 elements
corresponding to a mesh parameleof 0.4, 0.2, 0.1, and 0.05 mm, respectively, were
used, and the time step is set accordinglyzat= 0.04, 0.02, 0.01, and 0.005 seconds,
respectively. The evolution of the position of the interface obtained onxa S0 mesh of
bilinear elements is shown in Fig. 6 at intervals of 10 seconds. Initially, 25 markers desct
the interface; the final interface positiontat 100 s contains 97 markers.

In order to assess the error in the calculations, the simulations were rutyfeerhO s to
tr = 85 s. The radial distance to the origith of the markers was calculated at every time
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FIG. 6. Axially symmetric solidification (interface position calculated in a 50 by 50 element mesh).

step, and the relative error in their position was obtained using both the Euclidean no
given by

1 n
—D (R-R2 (33)
i=1

and the maximum norm,
Em =max|R —R| (i =1,n), (34)

whereR is the exact interface position amds the total number of markers. This gives a
measure of the average and maximum errors as a function of time. The errors at each
step are then added and divided by the total number of time steps to obtain one nun
representative of the average error in the interface position throughout the whole ca
lation. This was done for each of the methods using each of the four meshes to ob
convergence rates. The results are presented in Figs. 7 and 8, where part (a) show
average error at the markers as a function of time and part (b) shows the total average
and the convergence rate in a log—log scale. Both the quadratic and the linear sche
to calculate the interface position yield second-order accuracy, however, the quadr
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FIG. 7. Linear approximation to the temperature gradient. (a) Average error in the interface positic
(b) Convergence rate.

approximation is more accurate, generally generating errors about 20% smaller than
linear approximation. The error in the approximation of the interface velocity is shov
in Figs. 9 and 10 for the linear and quadratic cases, respectively. It sho@gharcon-
vergence rate, as is expected because the interface velocity is determined by the te
rature gradients at the interface, and the gradients are approximaBydhdy the finite
element solution. Itis interesting to note that the quadratic scheme does not produce a |
accurate approximation to the interface velocity, i.e., the errors for both cases are practic
the same. The convergence rate is expected to be first order, since it involves the evalu
of the temperature gradients at the interface; this is reflected in Figs. 9b and 10b. In the
part of the figures, it is observed that there are significant oscillations in the velocity er
that, in one-dimensional calculations, have been identified as oscillations in the interf
velocity itself. Ways to eliminate or at least minimize these oscillations are currently bei
explored.

The behavior of the error at individual markers has been examined at three marker pc
located at 0, 22.5, and 45 degrees with respect to the positiwés. In general, these follow
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FIG. 8. Quadratic interpolation to the temperature gradient. (a) Average error in the interface positic
(b) Convergence rate.

the same behavior as the average errors. The maximum errors occurred in the mark
22.5 degrees and are shown in Fig. 11 for the linear case. In part (a), oscillations in
interface position error are observed that decrease rapidly in magnitude as the me:
refined, but the oscillations persist even in the finest mesh. In part (b), only the portion wh
the interface goes between 4.5 and 5.5 mm has been depicted for better clarity. Oscillat
in the error in the interface velocity are observed that also decrease in amplitude v
mesh refinement, but not as rapidly, and remain with a magnitude of about 0.25% for
200 x 200 mesh. Itis clear to us that these oscillations are related to perturbations gener
when the interface markers go across inter-element boundaries, to perturbations that
when new markers are added on the interface, and to the latent heat source generat
the interface across which the conductivity changes. Further approaches to alleviate
problem are currently under study. The data related to this error analysis are summarize
Table I. We should also point out that this is but one of many one- and two-dimensional te
that have been performed to assess the accuracy of the algorithm; all the results consist
show that the algorithm is second-order accurate.
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FIG. 9. Linear approximation to the temperature gradient. (a) Error in the interface velocity. (b) Converger
rate for the interface velocity.

5. EXAMPLES OF UNSTABLE SOLIDIFICATION

The problems used to evaluate the accuracy and convergence properties of the algo
in the previous section were cases of stable solidification. Concentration here will be
simulations of solidification into an undercooled liquid. First, some problems solved
both Juric and Tryggvason [8] and Udaykunedral. [10] are examined and then results
from the present study are compared with those reported in their work. These calci
tions are performed in a square region of side 4 units long. The initial seed is specifiec
X = X; + Rcog0) andy = y. + Rsin(®), where(x., Y.) isthe center of the region aftl=
0.1 + 0.02 cog46)—a case with four-fold symmetry. The initial temperature of the seed
Tm, and the initial temperature of the liquid is sefitg < Tr,. The undercoolingTs, — T,
is chosen so thast = —0.5. The surface tension and kinetic mobility are isotropics
u = 0.002. The heat capacity and thermal conductivity are the same in both pha:
i.e., n=A = 1. The boundaries of the domain are adiabatic. As in [8, 10], solutior
were obtained with meshes of 180100 200 x 200, and 400« 400 bilinear elements in
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FIG.10. Quadraticinterpolation to the temperature gradient. (a) Error in the interface velocity in the maximt
norm. (b) Convergence rate for the interface velocity.

order to illustrate the influence of mesh refinement in the solution. The results are shc
in Fig. 12, where no difference is observed between the results obtained in theZD
and the 400« 400 meshes, substantiating the high rate of convergence of this model. T
initial seed and the shapes obtained at times 0.2, 0.4, 0.6, 0.8, and 1.0 are picturet
the coarse mesh, the results differ substantially from the results reported in Fig. 7 of
The differences are considerably reduced in the finer meshes, but the results obta
in the 400x 400 mesh exhibit secondary branches that are less pronounced and have
ter boundaries than those in [8]. On the other hand, these shapes show excellent a
ment with those shown in Fig. 21 of [10]—no differences can be observed for the fine
mesh.

Simulations with unequal solid and liquid conductivity, wher@ld< A < 5, that can be
compared to the results in Fig. 11 of [8] and Fig. 22 of [10] are now discussed. These w
obtained with a 40« 400 mesh. These results differ from those of [8], which were obtaine
in a 300x 300 grid, but agree very well with the results shown in [10]. In particular, th
cases withA = 5.0, 1.0, and 0.5 shown in Fig. 22 of [10] were calculated, and the resul
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FIG. 11. Errorin the interface position and velocity for marker at 22.5 degrees.

were the same. Figure 13 shows the interface shapes and temperature frelg- f@201,
which are to be compared with Fig. 22d in [10]. These solutions are somewhat differe
but not significantly different. However, a large discrepancy is observed in the velocity
solidification. The results reported in [10] show plots from time 0.0 to 0.25, when the upy
fingers reach a distance of abaut 3.3, while the shapes shown in Fig. 13 reach the sam
distance at = 0.45.

A grid anisotropy test performed using the data in the first example is shown in Fig.
In order to avoid boundary effects, the simulations were stopped when the temperatul
any node on the boundary changed by more than 0.1%. Results when the principal
of the seed are at angles of 0, 19, and 45 degrees ta-thés are shown in parts (a),
(b), and (c), respectively. Figure 14d shows the three calculations rotated to O deg
and superimposed. As can be observed, the solutions are almost identical. However, |
simulations are continued for a longer time, the effect of the boundary causes the solutiol
diverge from each other. Similar independence from the grid orientation has been obse
in other situations as well.

Simulation results are presented next for a case with anisotropic surface tension that ¢
sponds toSt= —0.8, o () = 0.002[1+ 0.4(8/3sirf(20) — 1)], n = A =1, andu = 0,
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FIG. 12. Effect of mesh refinement in the interface position for unstable solidification with isotropic surfac
tension and kinetic mobility.

which is the case with four-fold anisotropy in the surface tension presented in Fig. 25¢
[10]. The shapes obtained in a 4Q0400 mesh are shown in Fig. 15. They are very similal
to those given in [10], but are symmetric about both coordinate axes, as opposed to
shapes in [10], which are not symmetric about the y-axis. Most of the rest of the simulati
reported in [8, 10] have been repeated with the present algorithm with similar results. Tt
are interface shapes that are different from those in [8], but the present results compare
with those in [10] except for occasional differences. The most common difference is
persistence of symmetry in the present calculations in cases where symmetry is not pre
in the figures of [10].

Simulations were made in an attempt to reproduce the results of Sullivan and Lynch [:
who considered solidification of succinonitrile in a perturbed planar two-dimensional frol
A linear stability analysis predicts the most unstable wavelength 1@ be27.4 um. With
this in mind, calculations were performed in a regidr &ide by 4.y high using a mesh
of 300 x 200 bilinear elements and the physical data given in Table 2 of §34]= 4.7 x
10* cal/mm?K, cp. =459x 10 cal/mmK, «s=536x 10"° cal/mm-s-K,
kL =5.32x 1075 cal/mm-s- K, T =33125K,L =0.01086 cal/mm, T} =321786K,

0 =6.53x 10°° mm- K, andu =5.0 x 10~2 K/mm - s. This results in a Stefan number
St= —0.4. The problem also differs from the previous ones in that the vertical boundar
are kept at fixed constant temperaturgg:on the left-hand side antl,, on the right. The
top and bottom boundaries are adiabatic. Sufficient information could not be obtainec
reproduce the exact initial temperature used in [34], therefore, constant solid and lig
initial temperatures were used. The initial plane solid boundary is locatee-dd. 11 and
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FIG. 13. Solution for a solid-to-liquid conductivity ratia. = 0.01. (a) Interface position at timés= 0.05,
i = 1-9. (b) Temperature contourstat 0.35.

is perturbed with a sinusoidal wave of amplitutlg’500 and wavelengthg as given in

[34]. Figure 16 shows the results of the simulation. The temperature contours show hot s|
(labeled 12) where grooves form and one of the branches tends to slow down. Remel
can be observed at the tips of the smaller arms that are left behind and in the interdenc
regions at the far left where the temperature rises above melting. A direct comparison v
those of [34] is not possible because of the difference in the initial conditions, which ¢
critical in these problems. Large changes in the shapes that develop are caused by
small changes in the initial conditions. However, qualitatively, the same shapes and ger
dynamics of the interface at the beginning of the development of the dendrites as sh
in Figs. 13, 15, and 17 of [34] were observed, except that the instability develops mt
faster. In the present calculations, solidification is faster at the beginning and near the «
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FIG. 14. Effect of the seed orientation with respect to the mesh. (a) The seed’s axes have the same orient
as thex- andy-axes. (b) Seed’s axes oriented at a 19-degree anglexednely-axes. (c) Seed’s axes at 45 degrees
to thex- andy-axes. (d) Three cases (a—c) rotated to the same orientation and superposed.

when the temperature gradients are largest. For the case of solidification from a pertu
plane front, numerical experiments were performed in which different levels of noise we
introduced during the calculation. Different solutions were obtained for different levels
noise. In some cases, where no secondary branches would develop without continuc
perturbing the system, secondary and tertiary branches developed when the noise was a
It is therefore believed that some of the branching that has been reported in the litera
may have been numerically driven. Since a criterion to determine how these perturbat
should be introduced is lacking, these results, which probably could not be reproduce
other researchers, are not reported here.

In order to assess the accuracy of the present model in predicting the tip growth rate
dendrite, numerical experiments were performed and compared with the two-dimensic
boundary integral solution obtained by Meiron [35] using the microscopic solvability h
pothesis. Calculations were performed for a single dendrite arm growing in a square don
in the first quandrant from a circular seed centered at the origin, as illustrated in Figure !
in a way similar to calculations performed by Karma and Rappel [25]. This choice provic
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Level T
0.030

FIG. 15. Unstable solidification with anisotropic surface tension and adiabatic boundary conditions. (a)
terface shape at timés= 0.015, 0.03, and 0.045. (b) Temperature field and interfate-a.038; the thicker line

is the interface.

the maximum growth length before the effect of temperature diffusion reaches the bounc
and affects the velocity of the dendrite tip. Adiabatic boundary conditions were impos

on all four sides.

In order to compare results, the same nondimensional interfacial conditions, surf
tension, anisotropy function, and parameter definitions as in Meiron [35] are used, i.e.,

T
f(6)

—of (@)«

=14 ¢[1—cos46 — 6],

(35)
(36)
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FIG. 16. Unstable solidification from a perturbed plane front showing the initial perturbation to the interfas
(dotted line) to the far left. The interface is shown from: 0 tot = 0.052 s at time intervalét = 0.002 s and
the temperature field &t= 0.052 s.

wheres = o*/LH ando*/L is the capilarity length scale. The parameteepresents the
strength of the anisotropy ardis the angle between the normal to the interfageand
the x-axis anddy defines the direction of maximum growth. We define the nondimension
velocity byV = HV*/«, which is related to the nondimensional velodity' in Meiron
[35] by the expressio M = oV/2.

Results of the calculations for five different undercoolings= —0.25, —0.35, —0.45,
—0.55, and—0.65, were obtained using the values= 0.4 and6y = 7 /4. Figures 17a
and 17b show the dendrite tip velocity as a function of timeSt6= —0.25 and—0.65,
respectively. Figure 17c illustrates the development of the dendrigt at —0.45, and
Fig. 17d shows the steady-state velocity calculated using the present method comp
with those obtained from Fig. 8 of [35]. These results are listed in Table I, along with tl
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TABLE Il

Comparison of Steady-State Tip Velocities Calculated Using the Present Method with Those
Calculated in Ref. [35] Using the Microscopic Solvability Hypothesis

Domain CPU Time
(—)St o Size Mesh \% VM (hrs)
0.25 2x 10 18 x 18 600x 600 0.40 40 x 105 56
0.35 4% 10 12x 12 600x 600 1.05 21 x 104 53
0.45 10°3 6x6 500x 500 1.76 8 x 104 25
0.55 103 4 x4 400x 400 5.10 255x 102 12
0.65 2% 1073 4x4 400x 400 7.43 743 x 103 12

Note.Simulations were performed using one processor on a 400-MHz SGI 2000 origin machine.

1.5
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2
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FIG. 17. Comparison of the predicted dendrite tip growth rate with the steady-state results of [35]. (a) 1
velocity as a function of time fot = —0.25. (b) Tip velocity as a function of time f@t = —0.65. (c) Domain
and interface contours fd8t= —0.45 for 0< t < 2.2 at intervals ofAt = 0.1. (d) Dimensionless tip velocity
versus undercooling: -- calculated;—reference [35].
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FIG. 17—Continued

parameters used in the calculation and the approximate CPU times expended. The nu
of time steps performed in each case varied between 10,000 and 25,000; calculation
carried until the velocity shows less than 1% variation over 1000 time steps. The estims
steady-state velocity was obtained by averaging the calculated instantaneous velocity
the last 100 consecutive time steps. The CPU column is included in order to convey an |
of the efficiency of the present model. Accurate predictions of the CPU time required i
simulation are difficult to make because it varies according to the problem. It must alsc
noted that no special efforts were made at this point to optimize the code. The calculati
shown were performed on a 400-MHz SGI Origin 2000 machine. This performance can
be compared with those of the models in [9] and [10] because no computational costs v
reported there.
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FIG. 18. Interactions in the solidification of several dendrites with adiabatic boundary conditions. (a) Fo
seeds in a 20& 200 mesh a6t = —0.5; time range from O to 0.4 and 20 interfaces for each seed shown at tirr
interval At = 0.02. (b) Nine seeds in a 400400 mesh aSt= —1.0; time range from 0 to 0.015 plotted at
intervalsAt = 0.003.

Examples that illustrate the interaction between dendrites growing simultaneously
now presented. Conditions are the same as in the first example shown in Fig. 12; in partici
all the boundaries are adiabatic. The results of two calculations are shown in Fig. 18.°
one in part (a) includes four identical seeds, the mesh is2R00 elements, and the Stefan
number is—0.5. Because the magnitude of the Stefan number is less than one, more ent
is released by latent heat than is required to raise the temperature of the melt; therefor
the dendrites get closer together, the solidification process will come to a halt. A case v
nine squarely distributed seeds, a 40@00-element mesh, arigt = —1 is shown in part
(b). The dendrites can be seen growing together and forming grain boundaries.
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FIG. 19. Merging two initial interfaces into one. (a) Fixed temperature boundary conditioBs-at—0.8.
Interfaces betweeh= 0 andt = 0.13 at intervalsAt = 0.01 except for numbers one and two, which are very
close to when merging takes place. (b) Adiabatic boundary conditioBs-at—1.2; results betweeh= 0 and
t = 0.014 at intervalsAt = 0.001.

The final cases also use the same data as the first example. Results depicted in Fig
show a simulation calculated in a 260200 mesh in which the boundaries were kept a
a fixed temperature to allow heat loss from the computational regi&t at—0.8. The
centers of the seeds were initially 0.4 unit apart, and the interfaces were allowed to m¢
when they came in contact. The dendrites were merged when the distance betweer
two markers not in the same interface became smaller thah,Qvhereh denotes the
mesh size. Figure 19b shows another case calculated in a 400 mesh using adiabatic
boundary conditions at a Stefan numis¢r= —1.2. In this case, the interface is very stable
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and becomes smoother as time goes by. Because the magnitude of the Stefan numl
greater than one, the heat released is not great enough to stop the solidification anc
dendrites can get together even though the boundary conditions are adiabatic. The ce
of the seeds are initially one unit apart.

6. CONCLUSIONS

A finite element model for interface tracking based on a fixed mesh that is simple &
easy to use has been developed. The method shows second-order convergence in tt
proximation to the interface and first-order when approximating the interface velocity. Tt
is consistent with the fact that the interface position depends directly on the tempera
field and the velocity on the temperature gradient at the interface, and has been achieve
ensuring that all approximations are consistent with second-order accuracy. The appr
mation to the interface velocity shows oscillations that could not be eliminated. Howev
it is believed that it is important to do so in order to be able to fully control the introduc
tion of noise in the calculations, since this may significantly alter the solutions in unstal
problems. A comparison of results obtained with this method with some of the results
[8, 10, 34] shows that the different methods do not always yield the same solution to un:
ble solidification problems and underscores the need to establish well-designed bencht
problems to evaluate the existing numerical models. It is believed that at least part of
cause for these discrepancies lies in the different levels of numerical noise present in
algorithms. This shows up in the present method in the approximation to the interface
locity, even though a great deal of effort went into attempting to eliminate these numeri
perturbations during the development of the algorithm.

A comparison between the direct sharp-front method and some of the results that t
been obtained with the phase-field method has been left for future study.

A special effort was made to include all the information needed for other researcher:
model each of the cases that were simulated using the present algorithm. Basic nume
techniques that address this type of simulation have already been established. How
comparisons between the methods are not readily available and continuing progress
be greatly enhanced if careful comparisons and benchmarking is effected. This is prob:
the best way to improve our understanding of the different techniques needed in orde
introduce refinements that will bring them to the next level of reliability.
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