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A two-dimensional finite element method capable of tracking sharp interfaces is
developed. The method is based on a fixed mesh of bilinear isoparametric elements
and is extremely simple and easy to use. The interfaces are tracked with a set of marker
points that define their position at all times. Several different approaches to finding
the interface position and velocity are discussed, and their effect on the convergence
rate is examined. It is shown through numerical examples that the approximation
to the interface position converges with second-order accuracy in two-dimensional
problems, as opposed to previously developed finite difference algorithms that are
only first-order accurate. The approximation to the interface velocity is shown to be
of first order. A number of examples are examined, including several that provide a
careful comparison with previously published results.c© 2001 Academic Press
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1. INTRODUCTION

The simulation of crystal growth into an undercooled liquid has attracted much interest
for a number of years because of the technological importance of understanding and con-
trolling solidification processes in the production of advanced materials in the aerospace and
semiconductors industries [1–10]. The numerical modeling of problems with phase change
started over 50 years ago, when the first attempts at modeling stable melting/solidification—
also known as the Stefan problem—were made [11, 12]. An excellent historical review is
given in Juric and Tryggvason [8]; further extensive discussions and literature reviews in
this topic can be found in Crivelli and Idelson [13], Floryan and Ramussen [14], Voller
et al. [15], Udaykumaret al. [10], Udaykumar and Shyy [16], and Provataset al. [9].

The presence of an interface between two phases, which in this work is assumed to be
solid and liquid, complicates the solution of an otherwise manageable problem. The interface
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position must be calculated as part of the solution process, and interface conditions must
be satisfied at this interface. This results in a highly nonlinear problem that is very sensi-
tive to numerical error and prone to numerical instability. The early numerical models of
melting/solidification were developed for the stable Stefan problem and avoided the actual
calculation of the interface position, while still being able to calculate the thermal field
[17–20]. However, when dealing with unstable solidification, as is the case with a crystal
growing into an undercooled liquid, it is necessary to accurately calculate the interface
position. This led to the development of diffuse-interface models, of which the phase-field
method is the most widely used [6, 7, 9, 21–24]. In the phase-field method, a continuous
transition between the two phases is introduced across a thin layer of finite thickness and
an additional variable identifying the phase, called the phase field, is calculated. The dis-
advantage of this method is that it is difficult to relate the parameters in the equation for
the field variable to physical parameters such as the surface tension. Furthermore, results
depend on the prescribed interface thickness, which is required to be extremely small for
accurate calculations [6, 7]. An excellent review of the phase-field methods can be found
in [25].

Boundary integral methods, in which the problem is cast in the form of an integral repre-
sentation of the interface, were developed next [4, 5, 26]. Even though these methods have
been used to successfully simulate very complex solid–liquid interfaces, they are extremely
complex mathematically and are computationally expensive. Most of these methods are
also limited to problems with homogeneous material properties.

More recently, methods tracking the sharp interface have been developed that are very
general in that they can handle the discontinuous properties at the interface and they provide
the explicit location of the interface at all times. Sullivanet al.[2] and Palle and Dantzig [27]
developed finite element schemes based on adaptive meshes in such a way that the interface
is always described by nodal mesh points that move with the interface. On the other hand,
Juric and Tryggvason [8], Udaykumaret al.[10], and Udaykumar and Shyy [16] developed
finite difference models based on a fixed mesh, where the interface is tracked using a set of
markers that define its position and shape. The method in [8] is not quite a sharp interface
method since it uses a distribution function to represent the temperature and the heat source
term at the interface but uses markers to follow the position of the interface itself. The
method in [10] is strictly a sharp interface method. These methods successfully modeled
unstable solidification of pure substances under a variety of different conditions, such as
discontinuous conductivities, anisotropic surface tension, and kinetic mobility, and different
symmetry modes. The moving mesh method in [2] was shown to be second-order accurate
[28]; however, the approximation to the interface location in [8] and [10] is only first-order
accurate.

In this work, a finite element method for front tracking is developed that is based on a fixed
mesh that follows the interface in a way similar to the methods of Juric and Tryggvason [8]
and Udaykumaret al. [10]. The method is extremely simple and restricts all calculations—
except for the evaluation of the gradients in the direction normal to the interface—to the
element level. Moreover, it will be shown that this method exhibits second-order conver-
gence rates for the interface location.

The governing equations are introduced in the next section, and the numerical algo-
rithm is presented in Section 3. The approximation errors are discussed in Section 4,
and examples and further discussion are given in Section 5. Conclusions follow in
Section 6.
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2. PROBLEM FORMULATION

The solidification of a pure substance is addressed by assuming that conduction is the
only mechanism of heat transport. The energy equation is given by

η
∂TS

∂t
= 3∇2TS in the solid phase (1a)

and

∂TL

∂t
= ∇2TL in the liquid phase. (1b)

The conditions at the solid–liquid interface are

TS = TL = TI (2a)

3
∂TS

∂n
− ∂TL

∂n
= (1− γ TI )V. (2b)

In this work, the subscriptsS and L denote the solid and liquid phases, respectively.
The equations are made nondimensional using a reference lengthH , the reference time
τ = H2/αL , and the nondimensional temperatureT = cPL(T∗ − T∗m)/L, where(∗) indi-
cates a dimensional quantity. The parameters in (1) and (2) areη = ρScPS/ρLcPL , 3 =
κS/κL , St= cPL(T∗∞ − T∗m)/L, andγ = (cPS− cPL)/cPL. In the above,ρ denotes density,
cP is specific heat,κ is thermal conductivity,Tm is the melting temperature for a planar
interface,T∞ is the far-field temperature,L is the latent heat,V = (d ESI /dt) · n̂ is the nondi-
mensional local interface velocity,ESI is the interface, andTI is the local nondimensional
interface temperature.TI is given by the Gibbs–Thompson equation [8, 29]

TI − γ T2
I + σκ + µV = 0, (3)

whereκ is the local interface curvature,σ is the surface tension, andµ is the kinetic mobility
(all nondimensional). The last two quantities may vary locally to account for anisotropic
effects. In (2b), the normal derivative is defined as

∂T

∂n
= n̂ · ∇T, (4)

wheren̂ denotes the unit vector normal to the interface and pointing toward the liquid phase.
The boundary conditions associated with (1) will be of either the Dirichlet type, i.e.,

T(Ex, t) = b(Ex, t) for Ex ∈ 0D, (5a)

or the Neumann type,

−ε
∂T

∂n
(Ex, t) = q(Ex, t) for Ex ∈ 0N, (5b)

where the subscriptsD andN denote, respectively, the portions of the boundary where a
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Dirichlet or Neumann boundary condition is prescribed,ε = 3 in the solid region, andε = 1
in the liquid region. Mixed or Robins boundary conditions are also readily incorporated in
the model, but they are not discussed here for the sake of brevity. The nondimensional form
above offers the advantage that, in a given region where the far-field temperature is uniform,
the Stefan number becomes the Dirichlet boundary condition.

Finally, a set of initial conditions is needed for the temperature and interface position:

T(Ex, 0) = T0(Ex), ESI (Ex, 0) = ES(Ex). (6a,b)

This completes the formulation of the problem.

3. FINITE ELEMENT METHOD

The two-dimensional model will be described. In three dimensions, the procedures are
the same, with the obvious added complexities derived from the topology.

The discretization is based on a Galerkin formulation using the four-node isoparametric
bilinear element. Without loss of generality, the discussion is restricted to the case of a
rectangular domain,Ä, subdivided by a uniform rectangular mesh. It is also assumed that
an element can be intersected by an interface in only two basic ways (Fig. 1). The element is
subdivided into a triangle and a pentagon in the first case (Fig. 1a) and into two quadrilaterals
in the second case (Fig. 1b). It will become clear later in Section 3.4 that the resolution
that can be achieved with this method as two interfaces advance toward each other is of the
same magnitude as the mesh size. Therefore, if an element is intersected by more than one
interface segment, it is beyond the mesh resolution capabilities. If resolution at a smaller
scale is required, the mesh must be refined.

The weak form of (1) and (2) is as follows: Given the initial conditions (6) and a set of
markers that define the interface positionSI in C0(Ä), find a temperature fieldT among all

FIG. 1. Transformation of a portion of an intersected element into a standard form. (a) Triangle-pentagon
intersect. (b) Biquardrilaterial intersect.
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test functions in the spaceH1
D(Ä) such that the expression∫

Ä

(
wδ

∂T

∂t
+ ε∇w · ∇T

)
dÄ =

∫
SI

w [1− γ TI ] V dSI +
∫

0N

wq d0N (7)

is satisfied for all weighting functionsw in the spaceH1
0 (Ä), and (2b) is satisfied at all

marker points definingSI .
In (7), δ = η in the solid region,δ = 1 in the liquid,SI denotes the interface, andC0(Ä)

is the set of all continuous functions defined inÄ. The setH1
D(Ä) and the spaceH1

0 (Ä)

are, respectively, the subset of the spaceH1(Ä) consisting of functions that satisfy the
Dirichlet boundary conditions (5a) and the subspace ofH1(Ä) consisting of functions that
satisfy homogeneous boundary conditions on0D. H1(Ä) is the standard Sobolev space of
functions that are square integrable, together with their first partial derivatives overÄ.

3.1. Galerkin Formulation

The semi-discrete Galerkin form of (7) is obtained by replacing the spaceH1(Ä) with
the finite-dimensional space of piecewise bilinear functions,SN(Ä), defined over the finite
element mesh ofN nodes. Over each element,

T(x, y, t) =
4∑

j=1

Nj (x, y)Tj (t), (8)

and, settingwi = Ni , the semi-discrete Galerkin form is as follows: FindT in SN(Ä) such
that

N∑
j=1

{[∫
Ä

δNi Nj dÄ

]
Ṫj +

[∫
Ä

ε∇Ni∇Nj dÄ

]
Tj

}
=
∫

SI

Ni [1−γ TI ] dSI+
∫

0N

Ni q d0N

(9)

is satisfied fori = 1, 2, . . . , N, where globallyT = 6N
j=1Nj (x, y)Tj (t). The discretization

above yields a system of ordinary differential equations in time of the form

MṪ + K T = F , (10)

where the mass matrixM and the stiffness matrixK are given by

mi j =
∫

Ä

δNi Nj dÄ and ki j =
∫

Ä

ε∇Ni∇Nj dÄ. (11)

The right-hand side vectorF contains the contributions of the line integrals and the Dirichlet
boundary conditions.

The system of equations (10) is solved using theθ -method [30, p. 260]. The final system
of linear algebraic equations takes the form

(M + θ1t K )Tn+1 = (M + (θ − 1)1t K )Tn + [(1− θ)Fn + θ Fn+1]1t, (12)

where the superscriptn denotes the time level andθ is a user-defined parameter. In this
work, the valueθ = 0.5, which corresponds to the second-order-in-time Crank–Nicolson–
Galerkin method, has been used exclusively. Notice that the matricesM andK are rebuilt
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at every iteration because of the motion of the interface. The system of linear algebraic
equations (12) has been solved using a conjugate gradient iterative method.

3.2. Element Matrices

For elements that are completely contained within either the solid or liquid phase, the
matrices above are readily calculated from (11), and the line integral overSI is zero. Details
of how the matrices are constructed for elements that are intersected by an interface are
presented below.

3.2.1. Mass and Stiffness Matrices

In order to calculate the mass matrix of elements intersected by an interface, two isopara-
metric transformations are defined that map one portion of the element into a standard form
(Fig. 1). These transformations are simple and easy to evaluate; for example, for the case
in Fig. 1a, they are[

x

y

]
= 1

2

[
(1+ η)1x

(1− ξ)1y

]
and

[
ξ

η

]
=
[
(1+ a)L2− 1

(1+ b)L3− 1

]
.

For the situation in Fig. 1b, they are[
x

y

]
= 1

2

[
(1+ η)1x

(1− ξ)1y

]
and

[
ξ

η

]
=
[

α

1
4(1+ β)[b1+ b2+ α(b1− b2)] − 1

2(1− β)

]
.

Notice that the first transformation is a simple rotation and the second one always has the
same form. The integrals overÄ1 become∫

Ä1

F(x, y) dx dy=
∫ 1

0

∫ 1

0
F(L1, L2)

1

4
(1+ a)(1+ b)1x1y dL1 dL2 (13)

whenÄ1 is a triangle, and∫
Ä1

F(x, y) dx dy=
∫ 1

0

∫ 1

0
F(α, β)

1

16
(ζ + 2)1x1y dL1 dL2 (14)

whenÄ1 is a quadrilateral, whereζ = b1+ b2+ α(b1− b2). The integrals of the form in
(13) are evaluated numerically using six integration points in the triangle; the ones of the
form in (14) are calculated with a 3× 3 Gauss quadrature. The elements of the mass matrix
are given by

mi j =
∫

Ä

Ni Nj dÄ+ (η − 1)

∫
Ä1

Ni Nj dÄ1. (15)

For the stiffness matrix, the expressions for the integral overÄ1 become somewhat more
involved because of the presence of the derivatives, but they can still be obtained in closed
form. For the triangular cut, the derivatives are given by

∂Ni

∂x
= 2

(1+ b)1x

∂Ni

∂L3
and

∂Ni

∂y
= − 2

(1+ a)1y

∂Ni

∂L2
, (16)
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and, for the quadrilateral cut, by

∂Ni

∂x
=
(

8

(ζ + 2)1x

)
∂Ni

∂β
and

∂Ni

∂y
= − 2

1y

(
∂Ni

∂α
− (b1− b2)(1+ β)

(ζ + 2)

∂Ni

∂β

)
.

(17)

The stiffness matrix is obtained from

ki j =
∫

Ä

(
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y

)
dÄ+ (3− 1)

∫
Ä1

(
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y

)
dÄ1.

(18)

The same integration quadratures as for the mass matrix are used to evaluate the stiffness
matrices.

Finally, we should mention that approximating the interface segment by a straight line
within the element is consistent with the bilinear formulation and preserves the overall
second-order accuracy in the approximation. An additionalO(h2) error is introduced in the
case of the triangular cut in Fig. 1a.

3.2.2. Latent Heat Source Term

A weakness of previously proposed models has been their need to distribute the latent
heat produced at the interface over nodes away from the interface location, essentially
smearing the interface. Full advantage of finite element methodology is taken, using the
shape functions to integrate the source term exactly along the interface segment intersecting
an element, and assigning the contributions to the element nodes. Consider the element
shown in Fig. 2, which is intersected as shown. It is assumed that the interface segment
within the element is always a straight line. The contribution of the latent heat generated
on the interface segment to each node in the element is

Qi =
∫

SI

Ni (1− γ TI )V dSI . (19)

FIG. 2. Latent heat calculation and distribution to element nodes.(x1, y1) and(x2, y2) are the two intersections
between the interface and the element boundaries.SI denotes the interface segment, andV̄n is the average velocity
of the segment.
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To evaluate the integral in (19),SI is expressed parametrically as[
x(s)

y(s)

]
=
[
(x2− x1)s+ x1

(y2− y1)s+ y1

]
(20)

and (19) is rewritten as

Qi =
∫ 1

0
Ni (x(s), y(s))(1− γ T̄ I )V̄ LI ds, (21)

where T̄ and V̄ are, respectively, the average temperature and velocity of the interface
segment and

L I =
√

(x2− x1)2+ (y2− y1)2

is its length. Because the shape functions are a quadratic polynomial ins, they are integrated
exactly using Simpson’s rule or a two-point Gauss quadrature. The discretization of the
source term in one dimension using a linear approximation involves an error of fourth
order, hence, the largest error is introduced by the polygonal approximation of the interface
and isO(h2) [31, pp. 50 and 196].

3.3. Interface Tracking

The interface is described using a set of marker points located on the interface, as done
in [8, 10]. If the shortest side of a uniform rectangular grid is denoted byh, the distance
d between any two adjacent markers is controlled so that 0.3h < d < h. If the distance
between any two adjacent markers becomes larger thanh, another marker is added in
between. Ifd becomes shorter than 0.3h, then a marker is removed, provided that the
distance between the newly adjacent markers does not exceedh; otherwise, a marker is
relocated halfway between its neighbors.

To calculate the curvature and the unit normal to the interface, a local quadratic interpolant
centered at each interior marker is constructed. For markers lying on the boundary of the
domain, the condition that the interface intersect the boundary at an 90◦ angle is imposed,
and symmetry is used to construct a quadratic interpolant centered at this point. More
sophisticated interpolants, such as cubic and cubic splines, have also been utilized with no
measurable improvement in the solutions. This agrees with the conclusions of Chorin [32]
and Udaykumaret al.[10], who also reported that nothing is gained by utilizing higher-order
approximations to the interface.

Using the arc length coordinate as shown in Fig. 3,[
x(s)

y(s)

]
= (s− s2)(s− s3)

(s1− s2)(s1− s3)

[
x1

y1

]
+ (s− s1)(s− s3)

(s2− s1)(s2− s3)

[
x2

y2

]
+ (s− s1)(s− s2)

(s3− s1)(s3− s2)

[
x3

y3

]
,

(22)

wheres2 =
√

(xi − xi−1)2+ (yi − yi−1)2 and s3 = s2+
√

(xi+1− xi )2+ (yi+1− yi )2.
The expressions for the curvature and the unit normal at the midpoint,s= s2, are

κ = ys(s2)xss− xs(s2)yss

S3
(23)

n̂ = ys(s2)î − xs(s2) ĵ

S
, (24)
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FIG. 3. Local arc length coordinates to calculate curvature and direction of the normal to the interface.

with

S=
√

(xs(s2))2+ (ys(s2))2.

The derivatives are readily calculated from (22). Using the fact thats1 = 0,[
xs(s2)

ys(s2)

]
= s2− s3

s2s3

[
x1

y1

]
+ 2s2− s3

s2(s2− s3)

[
x2

y2

]
+ s2

s3(s3− s2)

[
x3

y3

]
(25a)[

xss

yss

]
= 2

s2s3

[
x1

y1

]
+ 2

s2(s2− s3)

[
x2

y2

]
+ 2

s3(s3− s2)

[
x3

y3

]
. (25b)

3.4. Interface Position and Velocity

The method used to determine the position and velocity of the interface is the most
critical aspect of this kind of method because it determines the order of convergence of the
numerical approximation to the interface position (convergence will be discussed in detail in
the next section). These quantities are obtained simultaneously from the interface condition
(2b). Two basic approaches have been used, both of which involve an iteration that uses the
velocity at the last time step to estimate the next position of the interface; that is, the initial
guesses are(xn+1

I )0 = xn
I +1tVn and(Vn+1)0 = Vn. Subsequent approximations follow

one of the two methods described below.

Direct approximation. In this method the jump in the heat flux at the interface is eval-
uated directly from the currently assumed interface position and the resulting temperature
field. A new interface velocity is then calculated directly from (2b), and a new estimate of
the interface position is derived by multiplying the average of the velocity at the last time
step and the new velocity by the time step. This is the simplest way available to update the
surface position.

Incremental method. In this method, (2b) is used to update the interface position rather
than the velocity. Figure 4 shows a schematic and the notation in one dimension for sim-
plicity. At the current iteration, the latest estimate of the interface position is(xn+1

I )k. The
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FIG. 4. Schematic of the incremental velocity updating method.

temperature field is calculated using this as the position of the interface. Introducing a
correctionek, the derivatives in (2b) are evaluated using(xn+1

I )k + ek as the interface posi-
tion and the velocity(Vn+1)k. Satisfaction of (2b), which is done using Newton’s method,
requires the solution of the nonlinear equationP(ek) = 0, where P is a polynomial inek.
Notice that the velocity can be made to be implicit by using [(xn+1

I )k + ek]/1t instead of
(Vn+1)k in (2b). However, this can lead to a loss of stability and has not proved to be very
effective.

Several methods have been implemented in conjunction with a variety of approxima-
tions to the normal derivatives in (2b). Here, the discussion is restricted to two of these
methods—linear approximation and quadratic finite element approximation—together with
the incremental approach to update the interface position. Other methods implemented
so far are not as effective or thus behave very similarly to the methods described below
and are better discussed in detail elsewhere. Using the notation shown in Fig. 5a in one
dimension to simplify the expressions and assuming that the solid is to the left of the
interface,

∂TS

∂n
∼= TI − T2

a+ e
(26a)

∂TL

∂n
∼= T3− TI

a− e
(26b)

for the linear approximation and

∂TS

∂n
(x) ∼=

(
2x − 3a− e

a(2a+ e)

)
T1+

(
2a+ e− 2x

a(a+ e)

)
T2+

(
2x − a

(a+ e)(2a+ e)

)
TI (27a)

∂TL

∂n
(x) ∼=

(
2x − 3a+ 2e

(e− a)(e− 2a)

)
TI +

(
2x + e− 2a

a(e− a)

)
T3+

(
2x − a+ e

a(2a− e)

)
T4 (27b)

for the quadratic finite element approximation. Equation (27a) is written with respect to a
local coordinate system with its origin atx = p1 in Fig. 5a, and (27b) is written with respect
to a local system located atx = pI in the same figure. In order to find the temperatures
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FIG. 5. Schematic and notation for the calculation of the temperature gradients at the interface. (a) Location
of the temperature interpolation points. (b) Error introduced by linear interpolation over an element containing the
interface.

Ti , i = 1, 2, 3, 4, the coordinates(xi , yi )of the points in the normal direction to the interface
are located and the elements containing these points are identified. The temperatures at the
points are obtained from the bilinear interpolant to the temperature field over the elements
containing them.

As long ase¿ a, (26) yields anO(a2) approximation to the derivatives at the mid-
points 1/2(p2+ pI ) and 1/2(pI + p3). The quadratic finite element approximations, (27),
are O(a3) when evaluated at the pointspL = (2a+ e)(3−√3)/6 and pR = (2a− e)
(3+√3)/6 to the left and right ofpI , respectively, where the points are given in their corre-
sponding local coordinate systems. The pointspL andpR correspond to those in a set of two
Gauss points over each element that are closest topI on each side of the interface [30, p. 196].

In Fig. 5b, we show (one dimensionally for simplicity) a temperature profile typical of
the problems considered in this work for an element that contains the interface, together
with the linear interpolant to the temperature over the element. It can be observed that the
linear interpolant over the element is inaccurate because of the kink in the temperature field
at the interface. Therefore, in order to preserve the accuracy in the calculation, we avoid
interpolating the temperature over this element by choosing the distancea in Eqs. (26) and
(27) large enough to ensure that the sampling pointsT2 andT3 in Fig. 5a do not lie in the
element that contains the interface. In practice,a = h has been used with no detrimental
effects, even though, strictly speaking, it should bea = h

√
2 in a square mesh. However,

smaller values, such asa = h/2, produce a loss of accuracy in the calculation. This is
important because it shows that the resolution of the method is restricted to the mesh size,
as mentioned at the beginning of Section 3, and justifies the assumption that elements can
be intersected by one interface segment only.
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For the direct method, the expressions for the normal derivatives are obtained from (26)
and (27) by settinge= 0. Regardless of the method used, a relaxation parameter must be
introduced in the calculation of the interface velocity, that is,

(Vn+1)k+1 = (Vn+1)k + β(V∗ − (Vn+1)k), (28)

whereV∗ is the velocity that has just been calculated using one of the methods described
above, andβ is the relaxation parameter. The value ofβ is problem dependent and is chosen
to help keep the number of iterations in a time step less than 8. In the direct method,β

is kept constant and values between 0.2 and 0.9 have been used, which are larger than
the value 0.1 used by Udaykumaret al. [10]. In calculations performed so far using the
incremental methods,β has been chosen between 0.005 and 0.03. This gives a relaxation
factor comparable to that used by Juric and Tryggvason [8]. The convergence criterion used
in the calculations presented in this work is that the change in the interface velocity between
iterations must be less than 0.001% at all marker points before the iteration stops and one
moves to the next time step.

The calculation proceeds as follows:

1. At timet = tn, the temperature fieldTn is known at every node in the fixed mesh, and
the interface positionSn and the velocityVn in the direction normal to the interface are
known at every marker. Seti = 0.

2. For each marker, calculate an initial guess for the position of the interface at time
tn+1 = tn +1t from (xn+1)0 = xn

I + Vn1t .
3. Find a new temperature field(Tn+1)i using the new interface position.
4. At each marker, calculateei from (2b) and (26) or (27).
5. Obtain a new interface position and velocity at each marker from(xn+1)i+1=(xn+1)i +

ei , V∗ = (Vn+1)i + ei /1t , and (28).
6. Calculate the maximum relative change in the velocityδV at the markers:

δV = max
‖(Vn+1)i+1− (Vn+1)i ‖
‖(Vn+1)i+1‖ . (29)

7. If δV < 10−5, setxn+1
I = (xn+1)i+1, Vn+1 = (Vn+1)i+1 and start the next time step.

Otherwise, seti = i + 1 and go back to step 3.

4. ACCURACY AND CONVERGENCE

It is well known that finite element approximations to the heat equation using bilinear
elements converge at a second-order rate in space, provided that the solution possesses
square-integrable first partial derivatives [30, p. 112]. These conditions are generally satis-
fied in the problems of interest here. However, the approximation to the interface position
is not automatically second-order accurate; in fact, the algorithms of Juric and Tryggvason
[8] and Udaykumaret al. [10] yield only a first-order convergence rate for the interface
position. Although a formal error analysis of the accuracy and the convergence rate of the
approximation to the interface position obtained with the present algorithm was not possible
here, a problem with a known analytical solution is used to show the convergence rate of
the present method.
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The convergence properties of the present finite element method are discussed in terms
of the problem of axially symmetric solidification in thexy-plane resulting from a line sink
perpendicular to the plane located at the origin, assuming that, initially, the plane is at a
uniform temperatureT∗∞, for which a similarity solution exists [29, p. 118; 33, p. 294]. The
solution is given by

T∗S(r, t) = Q

4πκS

[
Ei(λ2)− Ei

(
r 2

4αSt

)]
+ T∗m (30a)

T∗L (r, t) = T∗∞ −
T∗∞ − T∗m
Ei(3λ2)

Ei

(
r 2

4αL t

)
, (30b)

whereαS = κS/ρScPS andαL = κL/ρLcPL are the solid and liquid thermal diffusivities,Q
is the sink strength, andEi(x) is the exponential integralEi(x) = ∫∞x (e−s/s) ds, x > 0.
The interface locationR(t) is given by

R(t) = 2λ
√

αSt, (31)

whereλ is the unique root of the equation

λ2eλ2 + St3
e(1−3)λ2

Ei(3λ2)
= Q

4πραSL
, (32)

and the density is assumed to be constant.
Figure 6 illustrates the two-dimensional problem, which is solved for one quarter of the

plane over a region of dimensions 1 cm× 1 cm, as shown. The physical properties used
in the calculations areL = 20000 J/Kg,ρS = ρL = ρ = 104 Kg/m3, cPS= 100 J/Kg· K,
cPL = 160 J/Kg· K, κS = 20 J/s·m · K, κL = 10 J/s·m · K, andQ = 1000 J/s·m · K. For
this combination of parameters, the value ofλ in (31) is 0.10514688 andSt= 0.08 based
on T∗∞ − T∗m = 10 K. These properties were chosen because they are similar to those of
Pb-Sb alloys. The Stefan number was picked small to increase the difficulty of the numerical
problem. To avoid the difficulties associated with the singularity at the source and to make a
comparison of results for different meshes meaningful, a square of size 0.4 mm× 0.4 mm—
corresponding to the largest mesh size used in the calculations—that contains the origin
is removed from the domain and the calculations are started using as initial conditions the
analytical solution att = 10 s when the interface is atr = 2.974· 10−3 m, as shown in Fig. 6.
Along the boundaries defined by{x = 0.4 mm, 0≤ y ≤ 0.4 mm}, {y = 0.4 mm, 0≤ x ≤
0.4 mm}, x = 10 mm, andy = 10 mm, the analytical solution is imposed at all times as
a Dirichlet boundary condition on the temperature field. Along the rest of the segments,
x = 0 andy = 0, the symmetry condition of zero heat flux in, respectively, they- andx-
directions is imposed. Meshes of 25× 25, 50× 50, 100× 100, and 200× 200 elements
corresponding to a mesh parameterh of 0.4, 0.2, 0.1, and 0.05 mm, respectively, were
used, and the time step is set accordingly at1t = 0.04, 0.02, 0.01, and 0.005 seconds,
respectively. The evolution of the position of the interface obtained on a 50× 50 mesh of
bilinear elements is shown in Fig. 6 at intervals of 10 seconds. Initially, 25 markers describe
the interface; the final interface position att = 100 s contains 97 markers.

In order to assess the error in the calculations, the simulations were run fromt0 = 10 s to
tF = 85 s. The radial distance to the originRi of the markers was calculated at every time
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FIG. 6. Axially symmetric solidification (interface position calculated in a 50 by 50 element mesh).

step, and the relative error in their position was obtained using both the Euclidean norm,
given by

E2 = 1

R

√√√√1

n

n∑
i=1

(Ri − R)2, (33)

and the maximum norm,

EM = max|Ri − R| (i = 1, n), (34)

whereR is the exact interface position andn is the total number of markers. This gives a
measure of the average and maximum errors as a function of time. The errors at each time
step are then added and divided by the total number of time steps to obtain one number
representative of the average error in the interface position throughout the whole calcu-
lation. This was done for each of the methods using each of the four meshes to obtain
convergence rates. The results are presented in Figs. 7 and 8, where part (a) shows the
average error at the markers as a function of time and part (b) shows the total average error
and the convergence rate in a log–log scale. Both the quadratic and the linear schemes
to calculate the interface position yield second-order accuracy, however, the quadratic
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FIG. 7. Linear approximation to the temperature gradient. (a) Average error in the interface position.
(b) Convergence rate.

approximation is more accurate, generally generating errors about 20% smaller than the
linear approximation. The error in the approximation of the interface velocity is shown
in Figs. 9 and 10 for the linear and quadratic cases, respectively. It shows anO(h) con-
vergence rate, as is expected because the interface velocity is determined by the tempe-
rature gradients at the interface, and the gradients are approximated toO(h) by the finite
element solution. It is interesting to note that the quadratic scheme does not produce a more
accurate approximation to the interface velocity, i.e., the errors for both cases are practically
the same. The convergence rate is expected to be first order, since it involves the evaluation
of the temperature gradients at the interface; this is reflected in Figs. 9b and 10b. In the first
part of the figures, it is observed that there are significant oscillations in the velocity error
that, in one-dimensional calculations, have been identified as oscillations in the interface
velocity itself. Ways to eliminate or at least minimize these oscillations are currently being
explored.

The behavior of the error at individual markers has been examined at three marker points
located at 0, 22.5, and 45 degrees with respect to the positivex-axis. In general, these follow



780 ZHAO AND HEINRICH

FIG. 8. Quadratic interpolation to the temperature gradient. (a) Average error in the interface position.
(b) Convergence rate.

the same behavior as the average errors. The maximum errors occurred in the marker at
22.5 degrees and are shown in Fig. 11 for the linear case. In part (a), oscillations in the
interface position error are observed that decrease rapidly in magnitude as the mesh is
refined, but the oscillations persist even in the finest mesh. In part (b), only the portion where
the interface goes between 4.5 and 5.5 mm has been depicted for better clarity. Oscillations
in the error in the interface velocity are observed that also decrease in amplitude with
mesh refinement, but not as rapidly, and remain with a magnitude of about 0.25% for the
200× 200 mesh. It is clear to us that these oscillations are related to perturbations generated
when the interface markers go across inter-element boundaries, to perturbations that arise
when new markers are added on the interface, and to the latent heat source generated at
the interface across which the conductivity changes. Further approaches to alleviate this
problem are currently under study. The data related to this error analysis are summarized in
Table I. We should also point out that this is but one of many one- and two-dimensional tests
that have been performed to assess the accuracy of the algorithm; all the results consistently
show that the algorithm is second-order accurate.



FRONT-TRACKING FEM 781

FIG. 9. Linear approximation to the temperature gradient. (a) Error in the interface velocity. (b) Convergence
rate for the interface velocity.

5. EXAMPLES OF UNSTABLE SOLIDIFICATION

The problems used to evaluate the accuracy and convergence properties of the algorithm
in the previous section were cases of stable solidification. Concentration here will be on
simulations of solidification into an undercooled liquid. First, some problems solved by
both Juric and Tryggvason [8] and Udaykumaret al. [10] are examined and then results
from the present study are compared with those reported in their work. These calcula-
tions are performed in a square region of side 4 units long. The initial seed is specified by
x = xc + Rcos(θ)andy = yc + Rsin(θ), where(xc, yc) is the center of the region andR=
0.1+ 0.02 cos(4θ)—a case with four-fold symmetry. The initial temperature of the seed is
Tm, and the initial temperature of the liquid is set toT∞ < Tm. The undercooling,T∞ − Tm,
is chosen so thatSt= −0.5. The surface tension and kinetic mobility are isotropic,σ =
µ = 0.002. The heat capacity and thermal conductivity are the same in both phases,
i.e., η = 3 = 1. The boundaries of the domain are adiabatic. As in [8, 10], solutions
were obtained with meshes of 100× 100, 200× 200, and 400× 400 bilinear elements in
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FIG. 10. Quadratic interpolation to the temperature gradient. (a) Error in the interface velocity in the maximum
norm. (b) Convergence rate for the interface velocity.

order to illustrate the influence of mesh refinement in the solution. The results are shown
in Fig. 12, where no difference is observed between the results obtained in the 200× 200
and the 400× 400 meshes, substantiating the high rate of convergence of this model. The
initial seed and the shapes obtained at times 0.2, 0.4, 0.6, 0.8, and 1.0 are pictured. In
the coarse mesh, the results differ substantially from the results reported in Fig. 7 of [8].
The differences are considerably reduced in the finer meshes, but the results obtained
in the 400× 400 mesh exhibit secondary branches that are less pronounced and have flat-
ter boundaries than those in [8]. On the other hand, these shapes show excellent agree-
ment with those shown in Fig. 21 of [10]—no differences can be observed for the finest
mesh.

Simulations with unequal solid and liquid conductivity, where 0.01≤ 3 ≤ 5, that can be
compared to the results in Fig. 11 of [8] and Fig. 22 of [10] are now discussed. These were
obtained with a 400× 400 mesh. These results differ from those of [8], which were obtained
in a 300× 300 grid, but agree very well with the results shown in [10]. In particular, the
cases with3 = 5.0, 1.0, and 0.5 shown in Fig. 22 of [10] were calculated, and the results
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FIG. 11. Error in the interface position and velocity for marker at 22.5 degrees.

were the same. Figure 13 shows the interface shapes and temperature field for3 = 0.01,
which are to be compared with Fig. 22d in [10]. These solutions are somewhat different,
but not significantly different. However, a large discrepancy is observed in the velocity of
solidification. The results reported in [10] show plots from time 0.0 to 0.25, when the upper
fingers reach a distance of aboutz= 3.3, while the shapes shown in Fig. 13 reach the same
distance att = 0.45.

A grid anisotropy test performed using the data in the first example is shown in Fig. 14.
In order to avoid boundary effects, the simulations were stopped when the temperature at
any node on the boundary changed by more than 0.1%. Results when the principal axes
of the seed are at angles of 0, 19, and 45 degrees to thex-axis are shown in parts (a),
(b), and (c), respectively. Figure 14d shows the three calculations rotated to 0 degrees
and superimposed. As can be observed, the solutions are almost identical. However, if the
simulations are continued for a longer time, the effect of the boundary causes the solutions to
diverge from each other. Similar independence from the grid orientation has been observed
in other situations as well.

Simulation results are presented next for a case with anisotropic surface tension that corre-
sponds toSt= −0.8, σ (θ) = 0.002[1+ 0.4(8/3 sin4(2θ)− 1)], η = 3 = 1, andµ = 0,
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FIG. 12. Effect of mesh refinement in the interface position for unstable solidification with isotropic surface
tension and kinetic mobility.

which is the case with four-fold anisotropy in the surface tension presented in Fig. 25a of
[10]. The shapes obtained in a 400× 400 mesh are shown in Fig. 15. They are very similar
to those given in [10], but are symmetric about both coordinate axes, as opposed to the
shapes in [10], which are not symmetric about the y-axis. Most of the rest of the simulations
reported in [8, 10] have been repeated with the present algorithm with similar results. There
are interface shapes that are different from those in [8], but the present results compare well
with those in [10] except for occasional differences. The most common difference is the
persistence of symmetry in the present calculations in cases where symmetry is not present
in the figures of [10].

Simulations were made in an attempt to reproduce the results of Sullivan and Lynch [34],
who considered solidification of succinonitrile in a perturbed planar two-dimensional front.
A linear stability analysis predicts the most unstable wavelength to beλ0 = 27.4µm. With
this in mind, calculations were performed in a region 6λ0 wide by 4λ0 high using a mesh
of 300× 200 bilinear elements and the physical data given in Table 2 of [34]:cPS= 4.7×
10−4 cal/mm3 K, cPL = 4.59× 10−4 cal/mm3 K, κS = 5.36× 10−5 cal/mm· s · K,
κL = 5.32× 10−5 cal/mm· s · K, T∗m= 331.25 K,L = 0.01086 cal/mm3, T∗∞ = 321.786K ,
σ = 6.53× 10−5 mm · K, andµ= 5.0× 10−3 K/mm · s. This results in a Stefan number
St= −0.4. The problem also differs from the previous ones in that the vertical boundaries
are kept at fixed constant temperatures:Tm on the left-hand side andT∞ on the right. The
top and bottom boundaries are adiabatic. Sufficient information could not be obtained to
reproduce the exact initial temperature used in [34], therefore, constant solid and liquid
initial temperatures were used. The initial plane solid boundary is located atx = 0.1λ0 and
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FIG. 13. Solution for a solid-to-liquid conductivity ratio3 = 0.01. (a) Interface position at timest = 0.05i ,
i = 1–9. (b) Temperature contours att = 0.35.

is perturbed with a sinusoidal wave of amplitudeλ0/500 and wavelengthλ0 as given in
[34]. Figure 16 shows the results of the simulation. The temperature contours show hot spots
(labeled 12) where grooves form and one of the branches tends to slow down. Remelting
can be observed at the tips of the smaller arms that are left behind and in the interdendritic
regions at the far left where the temperature rises above melting. A direct comparison with
those of [34] is not possible because of the difference in the initial conditions, which are
critical in these problems. Large changes in the shapes that develop are caused by very
small changes in the initial conditions. However, qualitatively, the same shapes and general
dynamics of the interface at the beginning of the development of the dendrites as shown
in Figs. 13, 15, and 17 of [34] were observed, except that the instability develops much
faster. In the present calculations, solidification is faster at the beginning and near the end,
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FIG. 14. Effect of the seed orientation with respect to the mesh. (a) The seed’s axes have the same orientation
as thex- andy-axes. (b) Seed’s axes oriented at a 19-degree angle to thex- andy-axes. (c) Seed’s axes at 45 degrees
to thex- andy-axes. (d) Three cases (a–c) rotated to the same orientation and superposed.

when the temperature gradients are largest. For the case of solidification from a perturbed
plane front, numerical experiments were performed in which different levels of noise were
introduced during the calculation. Different solutions were obtained for different levels of
noise. In some cases, where no secondary branches would develop without continuously
perturbing the system, secondary and tertiary branches developed when the noise was added.
It is therefore believed that some of the branching that has been reported in the literature
may have been numerically driven. Since a criterion to determine how these perturbations
should be introduced is lacking, these results, which probably could not be reproduced by
other researchers, are not reported here.

In order to assess the accuracy of the present model in predicting the tip growth rate of a
dendrite, numerical experiments were performed and compared with the two-dimensional
boundary integral solution obtained by Meiron [35] using the microscopic solvability hy-
pothesis. Calculations were performed for a single dendrite arm growing in a square domain
in the first quandrant from a circular seed centered at the origin, as illustrated in Figure 17c,
in a way similar to calculations performed by Karma and Rappel [25]. This choice provides



788 ZHAO AND HEINRICH

FIG. 15. Unstable solidification with anisotropic surface tension and adiabatic boundary conditions. (a) In-
terface shape at timest = 0.015, 0.03, and 0.045. (b) Temperature field and interface att = 0.038; the thicker line
is the interface.

the maximum growth length before the effect of temperature diffusion reaches the boundary
and affects the velocity of the dendrite tip. Adiabatic boundary conditions were imposed
on all four sides.

In order to compare results, the same nondimensional interfacial conditions, surface
tension, anisotropy function, and parameter definitions as in Meiron [35] are used, i.e.,

TI = −σ f (θ)κ (35)

f (θ) = 1+ ζ [1− cos 4(θ − θ0)], (36)
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FIG. 16. Unstable solidification from a perturbed plane front showing the initial perturbation to the interface
(dotted line) to the far left. The interface is shown fromt = 0 to t = 0.052 s at time intervals1t = 0.002 s and
the temperature field att = 0.052 s.

whereσ = σ ∗/L H andσ ∗/L is the capilarity length scale. The parameterζ represents the
strength of the anisotropy andθ is the angle between the normal to the interface,n̂, and
thex-axis andθ0 defines the direction of maximum growth. We define the nondimensional
velocity byV = HV∗/αL , which is related to the nondimensional velocityV M in Meiron
[35] by the expressionV M = σ V/2.

Results of the calculations for five different undercoolings,St= −0.25,−0.35,−0.45,
−0.55, and−0.65, were obtained using the valuesζ = 0.4 andθ0 = π/4. Figures 17a
and 17b show the dendrite tip velocity as a function of time forSt= −0.25 and−0.65,
respectively. Figure 17c illustrates the development of the dendrite atSt= −0.45, and
Fig. 17d shows the steady-state velocity calculated using the present method compared
with those obtained from Fig. 8 of [35]. These results are listed in Table II, along with the
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TABLE II

Comparison of Steady-State Tip Velocities Calculated Using the Present Method with Those

Calculated in Ref. [35] Using the Microscopic Solvability Hypothesis

Domain CPU Time
(−)St σ Size Mesh V VM (hrs)

0.25 2× 10−4 18× 18 600× 600 0.40 4.0× 10−5 56
0.35 4× 10−4 12× 12 600× 600 1.05 2.1× 10−4 53
0.45 10−3 6× 6 500× 500 1.76 8.8× 10−4 25
0.55 10−3 4× 4 400× 400 5.10 2.55× 10−3 12
0.65 2× 10−3 4× 4 400× 400 7.43 7.43× 10−3 12

Note.Simulations were performed using one processor on a 400-MHz SGI 2000 origin machine.

FIG. 17. Comparison of the predicted dendrite tip growth rate with the steady-state results of [35]. (a) Tip
velocity as a function of time forSt= −0.25. (b) Tip velocity as a function of time forSt= −0.65. (c) Domain
and interface contours forSt= −0.45 for 0≤ t ≤ 2.2 at intervals of1t = 0.1. (d) Dimensionless tip velocity
versus undercooling: -- calculated;—reference [35].
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FIG. 17—Continued

parameters used in the calculation and the approximate CPU times expended. The number
of time steps performed in each case varied between 10,000 and 25,000; calculation was
carried until the velocity shows less than 1% variation over 1000 time steps. The estimated
steady-state velocity was obtained by averaging the calculated instantaneous velocity over
the last 100 consecutive time steps. The CPU column is included in order to convey an idea
of the efficiency of the present model. Accurate predictions of the CPU time required in a
simulation are difficult to make because it varies according to the problem. It must also be
noted that no special efforts were made at this point to optimize the code. The calculations
shown were performed on a 400-MHz SGI Origin 2000 machine. This performance cannot
be compared with those of the models in [9] and [10] because no computational costs were
reported there.
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FIG. 18. Interactions in the solidification of several dendrites with adiabatic boundary conditions. (a) Four
seeds in a 200× 200 mesh atSt= −0.5; time range from 0 to 0.4 and 20 interfaces for each seed shown at time
interval 1t = 0.02. (b) Nine seeds in a 400× 400 mesh atSt= −1.0; time range from 0 to 0.015 plotted at
intervals1t = 0.003.

Examples that illustrate the interaction between dendrites growing simultaneously are
now presented. Conditions are the same as in the first example shown in Fig. 12; in particular,
all the boundaries are adiabatic. The results of two calculations are shown in Fig. 18. The
one in part (a) includes four identical seeds, the mesh is 200× 200 elements, and the Stefan
number is−0.5. Because the magnitude of the Stefan number is less than one, more energy
is released by latent heat than is required to raise the temperature of the melt; therefore, as
the dendrites get closer together, the solidification process will come to a halt. A case with
nine squarely distributed seeds, a 400× 400-element mesh, andSt= −1 is shown in part
(b). The dendrites can be seen growing together and forming grain boundaries.
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FIG. 19. Merging two initial interfaces into one. (a) Fixed temperature boundary conditions atSt= −0.8.
Interfaces betweent = 0 andt = 0.13 at intervals1t = 0.01 except for numbers one and two, which are very
close to when merging takes place. (b) Adiabatic boundary conditions atSt= −1.2; results betweent = 0 and
t = 0.014 at intervals1t = 0.001.

The final cases also use the same data as the first example. Results depicted in Fig. 19a
show a simulation calculated in a 200× 200 mesh in which the boundaries were kept at
a fixed temperature to allow heat loss from the computational region atSt= −0.8. The
centers of the seeds were initially 0.4 unit apart, and the interfaces were allowed to merge
when they came in contact. The dendrites were merged when the distance between any
two markers not in the same interface became smaller than 0.4h, whereh denotes the
mesh size. Figure 19b shows another case calculated in a 400× 400 mesh using adiabatic
boundary conditions at a Stefan numberSt= −1.2. In this case, the interface is very stable
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and becomes smoother as time goes by. Because the magnitude of the Stefan number is
greater than one, the heat released is not great enough to stop the solidification and the
dendrites can get together even though the boundary conditions are adiabatic. The centers
of the seeds are initially one unit apart.

6. CONCLUSIONS

A finite element model for interface tracking based on a fixed mesh that is simple and
easy to use has been developed. The method shows second-order convergence in the ap-
proximation to the interface and first-order when approximating the interface velocity. This
is consistent with the fact that the interface position depends directly on the temperature
field and the velocity on the temperature gradient at the interface, and has been achieved by
ensuring that all approximations are consistent with second-order accuracy. The approxi-
mation to the interface velocity shows oscillations that could not be eliminated. However,
it is believed that it is important to do so in order to be able to fully control the introduc-
tion of noise in the calculations, since this may significantly alter the solutions in unstable
problems. A comparison of results obtained with this method with some of the results in
[8, 10, 34] shows that the different methods do not always yield the same solution to unsta-
ble solidification problems and underscores the need to establish well-designed benchmark
problems to evaluate the existing numerical models. It is believed that at least part of the
cause for these discrepancies lies in the different levels of numerical noise present in the
algorithms. This shows up in the present method in the approximation to the interface ve-
locity, even though a great deal of effort went into attempting to eliminate these numerical
perturbations during the development of the algorithm.

A comparison between the direct sharp-front method and some of the results that have
been obtained with the phase-field method has been left for future study.

A special effort was made to include all the information needed for other researchers to
model each of the cases that were simulated using the present algorithm. Basic numerical
techniques that address this type of simulation have already been established. However,
comparisons between the methods are not readily available and continuing progress will
be greatly enhanced if careful comparisons and benchmarking is effected. This is probably
the best way to improve our understanding of the different techniques needed in order to
introduce refinements that will bring them to the next level of reliability.
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